The Orara Formation and the reviewed Kangaroo Creek Sandstone
There has been an increase in our understanding of the Clarence-Moreton Basin in recent years. The central upper portions of the basin have had several cored and un-cored boreholes drilled during exploration for natural gas, especially Coal Seam Gas. In this post, I will cover the implications of this exploration on our understanding of the Kangaroo Creek Sandstone and the recognition of another previously unknown unit.
In a previous post I described the Kangaroo Creek Sandstone. This unit was identified as a formation directly overlying the Walloon Coal Measures (and the MacLean Sandstone Member of the Walloon Coal Measures) (McElroy 1963). However, a recent paper (Doig & Stanmore 2012) attempts to resolve newly identified characteristics which have resulted in the authors proposing the creation of a new Formation called the Orara Formation. It is proposed by Doig & Stanmore (2012) that the Orara formation is comprised of two member units, another new unit called the Bungawalbin Member and the now demoted Kangaroo Creek Sandstone Member.
Doig & Stanmore (2012) found that the proposed Bungawalbin Member differed substantially from the Kangaroo Creek Sandstone and overlying Grafton Formation. They describe the Bungawalbin as between 45m-115m thick and dominated by mudstone and carbonaceous mudstone that is thinly bedded with fine grained sandstone with increasing amounts of massive, medium-grained quartzose sandstone beds near the base of the member. The unit is interpreted as a persistent low energy riverine floodplain environment.
The contact with the underlying Kangaroo Creek Sandstone Member is transitional. With the medium-grained quartz rich sandstone becoming dominant in the Kangaroo Creek Sandstone. The composition and formation history of the Kangaroo Creek Sandstone has not been questioned but the clearly significant fine grained component of the Bungawalbin Member necessitates the distinction between these two members. Additionally, Doig & Stanmore (2012) clearly demonstrated that the geophysical response of the Bungawalbin Member was substantially different from the Kangaroo Creek Sandstone.
So, we are learning more about the land on which we live. The geology is slowly becoming better understood. It is interesting to observe that there has been no detailed work on the upper most formations of the Clarence-Moreton since the 1960’s. The drilling that has occurred has unlocked more hidden characteristics of the basin and helped our understanding of basin history as well as the original intention of finding gas resources.
There is more to cover in future posts including the further understanding of the basins youngest formation, the Grafton Formation, but that will come soon.
References/bibliography:
*Doig, A. & Stanmore, P. 2012. The Clarence-Moreton Basin in New South Wales: geology, stratigraphy and coal seam gas characteristics. Paper presented at the Eastern Australasian Basin Symposium IV. Brisbane.
*McElroy, C.T., 1963. The Geology of the Clarence-Moreton Basin. Memoirs of the Geological Survey of New South Wales, Geology. 9.
In a previous post I described the Kangaroo Creek Sandstone. This unit was identified as a formation directly overlying the Walloon Coal Measures (and the MacLean Sandstone Member of the Walloon Coal Measures) (McElroy 1963). However, a recent paper (Doig & Stanmore 2012) attempts to resolve newly identified characteristics which have resulted in the authors proposing the creation of a new Formation called the Orara Formation. It is proposed by Doig & Stanmore (2012) that the Orara formation is comprised of two member units, another new unit called the Bungawalbin Member and the now demoted Kangaroo Creek Sandstone Member.
Doig & Stanmore (2012) found that the proposed Bungawalbin Member differed substantially from the Kangaroo Creek Sandstone and overlying Grafton Formation. They describe the Bungawalbin as between 45m-115m thick and dominated by mudstone and carbonaceous mudstone that is thinly bedded with fine grained sandstone with increasing amounts of massive, medium-grained quartzose sandstone beds near the base of the member. The unit is interpreted as a persistent low energy riverine floodplain environment.
The contact with the underlying Kangaroo Creek Sandstone Member is transitional. With the medium-grained quartz rich sandstone becoming dominant in the Kangaroo Creek Sandstone. The composition and formation history of the Kangaroo Creek Sandstone has not been questioned but the clearly significant fine grained component of the Bungawalbin Member necessitates the distinction between these two members. Additionally, Doig & Stanmore (2012) clearly demonstrated that the geophysical response of the Bungawalbin Member was substantially different from the Kangaroo Creek Sandstone.
So, we are learning more about the land on which we live. The geology is slowly becoming better understood. It is interesting to observe that there has been no detailed work on the upper most formations of the Clarence-Moreton since the 1960’s. The drilling that has occurred has unlocked more hidden characteristics of the basin and helped our understanding of basin history as well as the original intention of finding gas resources.
There is more to cover in future posts including the further understanding of the basins youngest formation, the Grafton Formation, but that will come soon.
References/bibliography:
*Doig, A. & Stanmore, P. 2012. The Clarence-Moreton Basin in New South Wales: geology, stratigraphy and coal seam gas characteristics. Paper presented at the Eastern Australasian Basin Symposium IV. Brisbane.
*McElroy, C.T., 1963. The Geology of the Clarence-Moreton Basin. Memoirs of the Geological Survey of New South Wales, Geology. 9.